A NOVEL SYNTHESIS OF 1,2,4-TRIAZINES*

(Miss) T.V. Saraswathi and V.R.Srinivasan, Department of Chemistry, Osmania University, Hyderabad -7: India.

(Received in UK 3 May 1971; accepted in UK for publication 20 May 1971)

A number of 6-aryl- and 3-substituted-6-aryl-1,2,4-triazines (as-triazines) have been prepared by a very facile procedure in these laboratories. Heating a mixture of an acid hydrazide and an ω -haloacetophenone (2:1), in EtOH or AcOH on a boiling water-bath in the presence of molar quantities or a slight excess of NaOAc, KOAc or AgOAc for a few minutes, results in I in 60-93% yields (Scheme 1). Only two instances of 3,6-disubstituted-1,2,4-triazines I(R=C6H5, R'=CH3, and $R=R'=C_{\mathcal{L}}H_{\mathcal{L}}$) have been hitherto reported^{1,2}. A tentative mechanism by which these compounds are obtained is also given in Scheme 1. The elimination product, the amide, has been isolated in a few cases.

Mass spectra of these compounds I(i-v)(Scheme 2) are in agreement with their respective molecular weights and indicate two general modes of fragmentation The M⁺ion a loses $N_2^{3,4}$ with formation of a 4-membered ring ion^{*}b (paths A and B). represented as an aromatic azacyclobutadiene. This further fragments to give rise to the acetylenic and nitrile fragments d and e. Interestingly, compound v follows path B, evidenced by the absence of peaks at m/e values corresponding to fragments b and c; d and e fragment further in the usual manner, full details of which will be published elsewhere.

⁺ An account of a part of this work was presented at a National Seminar on "Recent Advances in Heterocyclic Chemistry", NCL, Poona, India, Sept.1970.

This transition is supported by the occurrence of a metastable peak at 179-183 (theor. 180.3) and 192-196(theor. 194.1) in compounds i and ii respectively.

Р	ATH `8'	SCHEME 2			-
	<u>ATH `A'</u>		$\rightarrow \left[\begin{array}{c} R \\ R \\ \hline \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\ C \\ C \\ C \\ C \\ C \\ \end{array} \right] + \left[\begin{array}{c} R \\ C \\$	R-C≅CH H	$\begin{bmatrix} N \equiv C - R' \\ e \end{bmatrix}^{\dagger}$
i.R=R'=phenyl- m/e	233,84%	m/e 205,53%	m/e 102,5, @	m/e 102,98%	m/e 103,100%
11.R=phenyl- R'=p-Me-phenyl- "	247,31%	" 219,20%	" 109.5,9.5%	" 102,100%	" 117,20%
.11.R=p-Me-phenyl- R'=phenyl- "	247,87%	" 219,20%	" 109.5,25%	" 116,100%	" 103,26%
iv.R=phenyl- R'=2-furyl "	223,89%	" 195,9.5%	" 97.5,9.5%	" 102,100%	" 93,27%
v.R=phenyl R'= trimethyl gallyl"	3 23,55%			" 102,100%	" 193,97%

Some of the compounds were authenticated by an unambiguous synthesis^{1,2}. The penultimate stage in the synthesis is the formation of dihydro triazines whose structures have not been established so far. A $1,2^{1}$ -, 2,5-or $4,5^{5}$ - dihydro structure has been proposed for these intermediates. However the 1,2-,2,3- or 5,6-dihydro structures were excluded by IR studies by Atkinson and Cossey². Attempted methylation by these authors² to differentiate between the 2.5- or 4.5dihydro structures failed. Our study of the NMR spectrum of 3,6-diphenyldihydro-1,2,4-triazine clearly indicates that this dihydro compound has a 2,5-dihydro structure and not the alternative 4,5-structure because of the clear methylene peak appearing as a singlet at 4.558. The 4,5-dihydro structure would show a doublet for the methylene due to coupling with the -NH-proton.

Acknowledgements: The authors are greatly indebted to Dr.A.J.Boulton, University of East Anglia, England, for the mass and NMR spectra. TVS is thankful to the UGC, New Delhi, for the award of a Fellowship.

References:

Spiro V. and Madonia P., <u>Gazetta</u>, <u>87</u> (1957), 992.
Atkinson, C.M. & Cossey, H.D., <u>J.Chem.Soc</u>. (1962), 1805.
Paudler, W.W. & Herbener, R.E., <u>J.Het.Chem</u>. <u>4</u> (1967), 244.
Sasaki,T., Minamoto,K.,Nischikawa,M. & Shima,T.,<u>Tetrahedron,25</u> (1969),1021.

5. Metze, R., Ber., 91 (1958), 1863.

@ The 102.5 peak is under the peaks at m/e 102 and m/e 103.